NTT Successfully Demonstrates 100 Gbps Wireless Transmission Using New Principle (OAM Multiplexing) as World's First

TOKYO, May 16, 2018 /PRNewswire/ --

- New Groundbreaking Technology for Achieving Next Generation of 5G Systems -

Nippon Telegraph and Telephone Corporation (NTT) has successfully demonstrated for the first time in the world 100 Gbps wireless transmission using a new principle -- Orbital Angular Momentum (OAM) multiplexing -- with the aim of achieving terabit-class wireless transmission to support demand for wireless communications in the 2030s. It was shown in a laboratory environment that dramatic leaps in transmission capacity could be achieved by an NTT-devised system that mounts data signals on electromagnetic waves generated by this new principle of OAM multiplexing in combination with widely used Multiple-Input Multiple-Output (MIMO) technology.

NTT conducted transmission experiments at a distance of 10 meters in the laboratory using the devised system operating in the 28 GHz frequency band. Eleven data signals each at a bit rate of 7.2 to 10.8 Gbps were simultaneously generated and carried by multiple OAM-multiplexed electromagnetic waves, thereby achieving large-capacity wireless transmission at a world-first total bit rate of 100 Gbps.

The results of this experiment revealed the possibility of applying this principle to large-capacity wireless transmission at a level about 100 times that of LTE and Wi-Fi and about 5 times that of 5G scheduled for launch. They are expected to contribute to the development of innovative wireless communications technologies for next generation of 5G systems such as connected cars, virtual-reality/augmented-reality (VR/AR), high-definition video transmission, and remote medicine.

NTT is to present these results at Wireless Technology Park 2018 (WTP2018) to be held on May 23-25 and at the 2018 IEEE 87th Vehicular Technology Conference: VTC2018-Spring, an international conference sponsored by the Institute of Electrical and Electronics Engineers (IEEE) to be held on June 3-6.

For details, visit: